Bioprocess Modelling of Biohydrogen Production by Rhodopseudomonas palustris : Model Development and E ects of Operating Conditions on Hydrogen Yield and Glycerol Conversion E ciency

نویسندگان

  • D. Zhang
  • N. Xiao
  • K. T. Mahbubani
  • E. A. del Rio-Chanona
  • N. K. H. Slater
  • V. S. Vassiliadis
چکیده

This research explores the photofermentation of glycerol to hydrogen by Rhodopseudomonas palustris, with the objective to maximise hydrogen production. Two piecewise models are designed to simulate the entire growth phase of R. palustris; a challenge that few dynamic models can accomplish. The parameters in both models were tted by the present batch experiments through the solution of the underlying optimal control problems by means of stable and accurate discretisation techniques. It was found that an initial glutamate to glycerol ratio of 0.25 was optimal, and was independent of the initial biomass concentration. The glycerol conversion e ciency was found to depend on initial biomass concentration and its computational peak is 64.4%. By optimising a 30-day industrially relevant batch process, the hydrogen productivity was improved to be 37.7 mL·g biomass·hr and the glycerol conversion e ciency was maintained at 58%. The models can then be applied as the connection to transfer biohydrogen production from laboratory scale into industrial scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoor versus outdoor biohydrogen photoproduction by Rhodopseudomonas palustris 42OL

Hydrogen is a promising energy carrier of the future, nevertheless biohydrogen technologies are still in their infancy. If biohydrogen systems are to become commercially competitive, they must be able to synthesize hydrogen at rates that are sufficient to power fuel cells of a sufficient size to carry out practical work [1]. Before the concept of hydrogen economy becomes a reality, a safe, econ...

متن کامل

Using Rhodopseudomonas palustris PT

Biohydrogen production from synthesis gas (syngas) was investigated using a local bacterium isolated from anaerobic sludge of dairy wastewater. The isolated strain Rhodopseudomonas palustris PT was able to convert syngas to hydrogen through water shift gas (WGS) reaction. The aim of present study was to determine the optimum concentration of ferric citrate which avoids the cell growth inhibitio...

متن کامل

Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis

Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...

متن کامل

Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analy...

متن کامل

Hydrogen Photoproduction by Rhodopseudomonas palustris 42OL Cultured at High Irradiance under a Semicontinuous Regime

The main goal of this study was to increase the hydrogen production rate improving the culture technique and the photobioreactor performances. Experiments were carried out at a constant culture temperature of 30°C and at an average irradiance of 480 W m(-2) using a cylindrical photobioreactor (4.0 cm, internal diameter). The culture technique, namely, the semicontinuous regime for growing Rhodo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015